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Abstract 

Hypotension, defined as a drop in blood pressure below acceptable levels, is associated with 

increases in morbidity and mortality among patients admitted to an intensive care unit.  Current 

methods of predicting if a patient will experience hypotension in the clinical environment are 

limited by delayed analysis and a lack of accurate predictive algorithms to anticipate an evolving 

hypotensive event. The purpose of this research was to employ Artificial Intelligence 

methodologies using vital signs data to predict the onset of hypotension in Intensive Care Unit 

patients from the Medical Information Mart for Intensive Care-IV dataset. By comparing an 

Explainable Boosting Machine, Long Short-Term Memory with attention mechanism, and 

Logistic Regression models, the research utilized minute-by-minute vital signs from various 

historical windows to predict hypotension one hour before onset. After analyzing 1340 

hypotension and 2027 non-hypotension cases, the Explainable Boosting Machine model 

achieved 90% sensitivity and 85% specificity using a 3-hour lookback window, outperforming 

Logistic Regression and matching the Deep Learning model’s performance. These findings 

indicate that the onset of hypotension can be accurately predicted up to one hour in advance of 

the event.  This early identification of patients who have a high risk of developing hypotension 

has the potential to support early interventions and improve patient outcomes.  

Keywords: hypotension; artificial intelligence; continuous monitoring; early prediction; vital signs 
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Introduction 

Hypotension, or a drop in blood pressure, experienced by patients in the Intensive Care Unit 

(ICU) is often a harbinger of critical events including Acute Kidney Injury (AKI), Myocardial 

Infarction (MI), and other life-threatening conditions (Haase et al., 2009). The economic burden 

of treating hypotension has escalated quickly to $870 million in 2023, and this amount is 

estimated to double by 2032 (Market Study Report, 2023). Traditional methods of identifying 

patients who are at risk for developing hypotension often involve time-consuming chart reviews 

and data that have been manual entered into electronic medical records (EMRs), making the 

process inefficient and susceptible to errors which may delay clinical interventions (Despins, 

2017). 

The development of Artificial Intelligence (AI) algorithms capable of analyzing real-time vital sign 

data presents a paradigm shift in managing critically ill patients. By enabling the early detection 

of hypotensive trends, AI technologies hold the promise of facilitating intervention strategies that 

can preempt the onset of severe complications that may result from a hypotensive event and 

other associated negative health consequences.  

However, despite recent technological advances, the integration of AI into the early identification 

of hypotension is still in its infancy, often lacking near real-time analytics and accurate predictive 

capabilities. This study seeks to bridge this gap, offering a novel AI approach that aims to 

improve on the early detection and management of hypotension. By analyzing continuous near 

real-time data from bedside monitors and centralized data systems, AI models have the 

potential to interpret complex data streams and synthesize early warning alerts for healthcare 

professionals, thereby enhancing the clinical decision-making process and improving patient 

outcomes.    
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Objectives 

The purpose of this research was to employ Artificial Intelligence methodologies using vital 

signs data to predict the onset of hypotension in Intensive Care Unit patients from the Medical 

Information Mart for Intensive Care-IV dataset. 

To achieve this purpose, the study pursued two primary objectives. The first objective was to 

develop and compare three AI-driven hypotension prediction models - Logistic Regression, 

Long Short-Term Memory (LSTM) Network with an attention mechanism, and Explainable 

Boosting Machine (EBM). These models were then evaluated using key performance metrics 

including sensitivity, specificity, area under the receiver operating characteristics curve (AUC), 

and an F-1 score. The optimal historical data window for accurate hypotension prediction was 

determined by balancing prediction accuracy with practical clinical utility. 

The second objective was to enhance the robustness of the prediction process by implementing 

an autoencoder-based anomaly detection system, following approaches demonstrated by 

Malhotra et al. (2016) and Zhang et al. (2019) in clinical time series analysis. This system 

identified irregular patterns in vital signs data before prediction, allowing the models to express 

uncertainty, rather than forcing potentially unreliable binary predictions. Similar to the approach 

validated by Zhou et al. (2021) in ICU settings, this created a three-category prediction system 

including hypotension likely, hypotension unlikely, and anomalous patterns requiring further 

clinical review. 

Methodology 
Dataset 

Data in this study were extracted from the Medical Information Mart for Intensive Care (MIMIC)-

IV database; this is an open-access resource developed by the MIT Lab for Computational 
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Physiology (Johnson et al., 2023). and contains de-identified patient demographics, vital signs, 

laboratory tests, and medications for Intensive Care Unit (ICU) patients at Beth Israel 

Deaconess Medical Center between 2008 and 2019. Patient privacy was maintained by 

removing all Protected Health Information (PHI) in compliance with Health Insurance Portability 

and Accountability Act (HIPAA) standards; therefore, IRB oversight of this study was not 

required. 

Inclusion criteria were adult individuals aged 18 and over who were admitted to the ICU. Eligible 

individuals had vital signs recorded at least once every hour, with no gaps in data exceeding 

one hour for any vital sign measures. This criterion ensured a balance between data 

completeness and sample size, allowing for the inclusion of patients with reasonably continuous 

monitoring while not excluding those with occasional gaps in their recorded vital signs. Vital 

signs extracted from the MIMIC-IV database included heart rate, temperature, respiratory rate, 

SpO2, systolic, diastolic blood pressure, and mean arterial pressure. For instances where 

multiple recordings of a vital sign occurred within the same minute, these values were averaged 

to provide a minute-averaged measure. In situations where a vital sign reading was absent for a 

given minute, imputation was performed using the most recent data available for the patient. 

The imputation techniques employed in this study were the last observation carried forward 

(LOCF) and the next observation carried backward (NOCB) methods. These techniques are 

widely recognized in healthcare research for their efficacy in managing missing follow-up 

observations, as they respect the sequential nature of clinical data and are less likely to 

introduce bias than simpler mean or median imputation methods (Hamer and Simpson, 2009). 

LOCF was first applied to fill forward any missing values, followed by NOCB to fill any remaining 

gaps backward. This approach was chosen due to its respect for data sequence in a time series 

data and suitability for real-time applications. LOCF and NOCB maintain temporal integrity, 
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avoid introducing artificial patterns, and are less likely to introduce bias compared to mean or 

median imputation methods. 

A hypotensive event was defined when at least five consecutive readings within any 10-minute 

window exceeded a systolic blood pressure (SBP) of 90 mmHg or lower and a mean arterial 

pressure (MAP) of 60 mmHg or lower (Yoon et al., 2020). To accurately identify these events, a 

minute-by-minute rolling window analysis over a 10-minute duration was employed for each 

patient stay, enabling dynamic tracking of each patient’s conditions. This rolling window 

approach continuously evaluated each 10-minute segment of a patient's stay, advancing one 

minute at a time, and for each window, the algorithm checked whether the least five readings 

met the hypotension criteria. If this condition was satisfied at any point during the stay, the 

patient was classified as having a hypotensive event, and the first such occurrence was marked 

as the onset of hypotension. If no 10-minute window throughout the entire stay met this 

criterion, the patient was classified as non-hypotensive. This method allowed for a 

comprehensive examination of each patient's vital signs, ensuring that no hypotensive events 

were missed, regardless of when they occurred during the ICU stay. Based on this definition 

and analysis, the study classified 1340 patient stays as hypotensive and 2027 as non-

hypotensive. 

To ensure the integrity of the predictive analysis, this study aligned the dataset by standardizing 

the timeframe from admission to the onset of hypotension across all patient stays. Specifically, 

the average time from admission to hypotension onset for patients who experienced 

hypotensive events was calculated. This average time was then used as a reference to align the 

timeline of non-hypotensive patient stays, ensuring each non-hypotensive stay was analyzed 

over a comparable duration (see Figure 1). This alignment was important for several reasons. 

First, it addressed the potential bias that could arise from analyzing patients at different stages 

of their ICU stay, for without alignment, patients who neared discharge could show more stable 
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vital signs due to their improved condition, potentially skewing the analysis. Similarly, patients in 

the early stages of their stay could exhibit more volatile vital signs as they were still being 

stabilized. This standardization allowed for a more fair and accurate comparison between 

hypotensive and non-hypotensive stays, with an emphasis on the analysis of the critical period 

leading up to potential a hypotension event. 

Analysis Plan 

An extensive feature engineering process was undertaken to capture a wide range of 

physiological patterns and trends based on the vital signs being studied. Derived clinical 

features included Shock Index, Pulse Pressure, and Cardiac Output were calculated as follows: 

 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 (1) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (2) 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (3) 

These derived features provided additional insights into cardiovascular function and 

hemodynamic status that were not directly captured by individual vital signs alone as they had 

been previously recognized as potential predictors for hypotension onset (Berger et al., 2013; 

Corrêa et al., 2013). Statistical features were computed, including rolling statistics such as min, 

max, mean, standard deviation, and median, for each vital sign over the specified look-back 

windows (see Figure 2). These rolling statistics captured the central tendency, variability, and 

extreme values of vital signs over time, potentially revealing patterns of stability or instability in a 

patient's condition. 

To complement these statistical measures, frequency domain analysis of vital signs was 

employed to detect subtle patterns that might precede hypotension. These metrics included 
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maximum magnitudes and dominant frequencies, which measure the strength and prevalence 

of specific rhythmic patterns in vital signs (Clifford et al., 2015). The spectral centroid, defined as 

the weighted average of the frequencies present in the signal, indicated where the center of 

mass of the frequency spectrum lied (Smith, 2011). The spectral spread measured how far the 

frequencies deviated from this center, while spectral entropy quantified the randomness or 

unpredictability in the signal (Pincus, 1991). For example, a sudden increase in spectral entropy 

of blood pressure measurements could have indicated the deterioration of normal 

cardiovascular regulatory mechanisms before a hypotensive event. These frequency-based 

measurements could also reveal recurring patterns in vital signs that may not be apparent 

through traditional time-based analysis. 

The analysis also incorporated trend analysis features developed by Darroch Medical Solutions 

that quantify changes in vital signs stability over time. These specialized features were designed 

to capture nuanced patterns in physiological measurements that could escape detection through 

conventional statistical or frequency-based analysis. At their core, these features tracked two 

key aspects of vital sign behavior, including the frequency of directional changes and the 

magnitude of these variations. 

The directional change count represented how often a vital sign's trajectory reversed direction 

within specified time windows and served as an indicator of signal volatility. Complementing this 

measure with the mean, minimum, and maximum values of these changes both captured the 

scale of the variations and provided context about the intensity of the fluctuations. For instance, 

if heart rate measurements showed frequent directional changes of large magnitude, this could 

have indicated the cardiovascular system was instable which may have preceded a hypotensive 

event. These trend measurements provided additional insight into blood pressure stability 

beyond what could be observed through standard statistical measures, particularly in identifying 

patterns of physiological compensation that could occur before acute deterioration. By 
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combining clinical measurements, statistical analysis, frequency domain analysis, and trend 

analysis, the feature engineering process created a detailed representation of patients’ vital 

signs. This comprehensive approach allowed the AI models to detect both obvious and subtle 

indicators of impending hypotension, potentially improving prediction accuracy. 

The original MIMIC-IV dataset was partitioned into three subsets, including training (70%), 

validation (15%), and testing (15%) sets, with care taken to maintain the original distribution of 

hypotensive and non-hypotensive stays across all sets. The training set was used to teach the 

models of the various patterns and relationships within the data. The validation set served two 

primary purposes: First, this data set supported the tuning of the model's hyperparameters and 

provided an unbiased evaluation of the model's performance during the training process. This 

process primarily addressed overfitting, a phenomenon in which a model learns training data in 

a manner that internalizes noise and peculiarities (Goodfellow et al., 2016). In many cases, 

overfitting causes a model to internalize random fluctuations as meaningful patterns, which can 

result in poorer performance on unseen data. Second, the validation set aided model selection 

by allowing the comparison of different model architectures or parameters on data not used in 

training. The testing set, which is not engaged during the training and tuning phases, is used for 

the final evaluation of the model's performance, providing an unbiased assessment of the 

model's psychometric performance with novel data. This separate analysis of the three subsets 

of the original data ensured that the developed models were robust and capable of performing 

well on future novel data. 

Model performance was evaluated based on sensitivity, specificity, the area under the receiver 

operating characteristic curve (AUC), and the F1-score in predicting hypotension 60 minutes 

prior to clinical onset. Sensitivity measures the model's ability to correctly identify impending 

hypotensive events, while specificity assesses its ability to correctly identify non-hypotensive 

cases. The F1-score is the harmonic mean of precision and recall, and it provides a balanced 
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measure of the model's performance, particularly useful in scenarios with imbalanced datasets. 

AUC provides an overall measure of the model's discriminative power across various 

classification thresholds. Together, these metrics offer a comprehensive assessment of the 

model's predictive capabilities, balancing its ability to identify true positives while minimizing 

false alarms. 

An innovative approach of this study was the integration of anomaly detection to enhance the 

robustness of predictions. An autoencoder was trained on non-hypotensive patient data to learn 

typical vital sign patterns. During the prediction phase, input sequences were passed through 

this autoencoder to calculate a reconstruction error that served as the anomaly score. Cases 

that exceeded the threshold were flagged as potential anomalies, which allowed for special 

clinical consideration and improved the model's performance in unusual or complex cases (see 

Figure 3). A comparative analysis of the AI models, included Logistic Regression, Explainable 

Boosting Machine (EBM), and Long Short-Term Memory (LSTM) Network with attention 

mechanism, was conducted across different look-back windows to determine the optimal 

configuration. This comparison aimed to identify the most effective combination of model 

architecture and historical data duration for accurate hypotension prediction which balanced 

predictive power with computational efficiency. 

Model Training 
The model training phase involved three distinct approaches: Explainable Boosting Machine 

(EBM), Long Short-Term Memory (LSTM) with Attention Mechanism, and Logistic Regression. 

Each model was trained using the same preprocessed data to ensure a fair comparison of their 

performance in predicting hypotension onset. 

Explainable Boosting Machine 
The first machine learning model employed for hypotension onset prediction was the 

Explainable Boosting Machine (EBM), a decision tree-based model trained on derived features 
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from patients’ vital signs (Caruana et al., 2015). EBM is typically selected for its powerful 

interpretability, making it highly suitable for high-stake decision fields such as healthcare 

settings. EBM provides clear explanations of how each vital sign contributes to its predictions, 

allowing healthcare providers to understand and validate the model's decision-making process.  

For work in this project, EBM examined each vital sign independently and then considered how 

pairs of vital signs worked together to predict hypotension. For example, it might have learned 

that a moderate drop in systolic blood pressure alone may not have indicated impending 

hypotension, but when combined with an elevated heart rate, it became a significant predictor. 

This approach was designed to mirror how clinicians often evaluate multiple vital signs together 

to assess patient status. 

The EBM model generated a probability value, ranging from 0 to 1, that represented the 

likelihood of the look-back window belonging to a particular hypotensive or non-hypotensive 

event; this was based on observed trends in patients' vital signs in that look-back window. To 

make predictions more accurate, a decision threshold was used to convert these probabilities 

into discrete class assignments that maximized both sensitivity and specificity. The optimal 

decision threshold was determined using the validation set which provided a basis for evaluating 

the model's performance at various thresholds in order to ensure the best balance between 

sensitivity and specificity before assessment on the test set. When the generated probability 

was compared against the decision threshold by the model, patterns within a specific look-back 

window were classified as either hypotensive or non-hypotensive. If the probability was higher 

than the threshold, the patterns were classified as hypotensive positive. Conversely, if the 

probability was lower than the threshold, the patterns were classified as non-hypotensive, which 

suggested a lower likelihood of hypotensive development within the given time frame. 
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LSTM with Attention Mechanism 
Long Short-Term Memory (LSTM) models are a unique kind of deep learning capable of 

learning long-term dependencies. The LSTM architecture is particularly well-suited for time 

series data, as it can learn to retain important information over long sequences while forgetting 

irrelevant details. This is particularly useful in the context of predicting hypotension, where 

patterns leading to the event may develop over extended periods. 

The attention mechanism, on the other hand, allows a model to focus on different parts of the 

input sequence when making predictions. In the context of vital signs, this means the model can 

learn to pay more attention to specific time periods or particular vital sign patterns that are most 

indicative of impending hypotension. For instance, it might learn to focus more on recent sharp 

drops in blood pressure or on specific combinations of heart rate and blood pressure changes 

that often precede hypotensive events. 

For work on this project, this combination of LSTM and attention mechanism enabled the model 

to effectively process the time series data of vital signs so as to capture the subtle temporal 

patterns that might be indicative of impending hypotension. The model could then learn to 

recognize complex patterns such as gradual trends, sudden changes, or specific sequences of 

vital sign fluctuations that are associated with increased risk of hypotension. 

Logistic Regression 
In addition to the EBM and LSTM with Attention Mechanism, a Logistic Regression (LR) model 

was utilized as a baseline for comparative analysis. LR has been widely used for classification 

tasks and is known for its inherent interpretability as it transforms input features into a linear 

regression (Fan et al., 2008). The general form of the LR model is given as follows: 

 𝑝𝑝(𝑦𝑦) = 1
1+𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑥𝑥1+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛) (5) 
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In this equation, 𝑝𝑝(𝑦𝑦) represents the probability of the output variable 𝑦𝑦 being equal to 

hypotensive (1), given the input variables 𝑥𝑥1 to 𝑥𝑥𝑛𝑛 and the associated weights 𝛽𝛽1 to 𝛽𝛽𝑛𝑛. The 

logistic regression model allows for a global interpretation of feature importance by analyzing 

the values of the 𝛽𝛽 feature weights. However, due to its linear nature, the LR model is not able 

to provide direct assessment of local explanations, as the feature importances are adjusted as 

being the same for the entire features distribution. Due to its simplicity, logistic regression often 

serves as an important baseline model. Its performance, relative to more complex models like 

EBM and LSTM, can provide insights into the complexity of the relationship between the input 

features and hypotension onset 

Anomaly Detection 
An innovative aspect of this study was the integration of an autoencoder that preceded the 

prediction models. Essentially a pattern-learning system, the autoencoder worked by first 

compressing (encoding) incoming vital signs data into a simplified form and then by attempting 

to reconstruct (decode) the original data. The purpose was to create a system which could learn 

the difference between normal patterns and nonnormal patterns; in the case of the latter, the 

case was flagged as potentially ambiguous.  

The autoencoder was first trained on both hypotensive (cases) and non-hypotensive (controls) 

patient data to learn the characteristic vital sign patterns associated with each group. When vital 

signs data was processed by the autoencoder, a reconstruction error was calculated which 

represented how different the reconstructed data was from the original input. A higher 

reconstruction error indicated that the pattern being observed was less similar to any of the 

patterns the autoencoder learned during training from either group. A threshold at the 95th 

percentile of reconstruction errors in the training set was established; anything above the 95th 

percentile was considered anomalous. Such cases would then be flagged as “uncertain” rather 

than a binary hypotensive or hypotensive event. 
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The integration of anomaly detection before the prediction models created a more 

comprehensive and robust system for hypotension prediction. By acknowledging when patterns 

appeared unusual compared to both typical hypotensive and non-hypotensive trajectories, the 

system could indicate when additional clinical scrutiny would be warranted. After all, one of the 

chief deterrents of any warning system is the unreliability in false positives or negatives 

particularly in fringe cases which contain unfamiliar patterns, and the inclusion of a third criteria 

yields a more comprehensive model which addresses unusual cases which can reduce model 

predictions accuracy and clinical utility in practice. 

Results 

The performance of the three machine learning models - Logistic Regression, Explainable 

Boosting Machine (EBM), and Long Short-Term Memory (LSTM) - was evaluated on the test set 

for predicting hypotension onset, both with and without an anomaly detector. The models were 

tested with different look-back windows (1, 2, 3, and 6 hours) while maintaining a consistent 1-

hour prediction window. 

Without the Anomaly Detector, the Logistic Regression showed the lowest performance, with 

sensitivity ranging from 71% to 76% and specificity from 69% to 73% across different look-back 

windows (see Table 1). The EBM model demonstrated improved performance, with sensitivity 

between 78% and 80.7% and specificity between 75% and 78%. While EBM outperformed 

Logistic Regression due to its ability to capture non-linear relationships, it fell short compared to 

LSTM in capturing complex temporal dependencies. As a tree-based model, EBM treated each 

time point independently, potentially missing important sequential patterns in the data. 

The LSTM model consistently outperformed both previous models, achieving the highest 

sensitivity of 85% (83-87% CI) and specificity of 82% (80-84% CI) with a 3-hour look-back 

window. LSTM's superior performance can be attributed to its ability to capture long-term 
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dependencies in sequential data. Its architecture, featuring memory cells and gating 

mechanisms, allowed it to selectively remember or forget information over long sequences, 

making it particularly suited for analyzing time-series vital sign data. The attention mechanism 

further enhanced its performance by allowing the model to focus on the most relevant parts of 

the input sequence when making predictions. 

The integration of the anomaly detector led to performance improvements across all models. 

Logistic Regression's sensitivity increased to 74-79% and specificity to 72-76% (see Table 2); 

the EBM model showed further enhancement, with sensitivity rising to 81-83.7% and specificity 

to 78-81%; the LSTM model maintained its superior performance, reaching a peak sensitivity of 

88% (86-90% CI) and specificity of 85% (83-87% CI), again with a 3-hour look-back window. 

To illustrate the statistical significance of these findings, Figure X presents the Receiver 

Operating Characteristic (ROC) curves for all models, clearly demonstrating the superior 

performance of the LSTM model, particularly when combined with the anomaly detector. The 

area under the ROC curve (AUC) for LSTM with anomaly detection was 0.92 (0.90-0.94 CI), 

significantly higher than EBM at 0.88 (0.86-0.90 CI) and Logistic Regression at 0.83 (0.81-0.85 

CI). 

Discussion 

The results demonstrate the effectiveness of AI models in predicting hypotension onset in ICU 

patients, with the LSTM model consistently outperforming other approaches. This finding can be 

attributed to LSTM's ability to capture long-term dependencies and complex temporal patterns 

in time-series data, which is crucial for predicting physiological events like hypotension. The 

consistent improvement in performance with the 3-hour look-back window across all models 

suggests that this timeframe provides an optimal balance of historical information. Shorter 



16 
 

windows may not capture enough context, while longer windows might introduce noise or 

irrelevant data. 

The integration of the anomaly detector resulted in notable performance improvements across 

all models. This enhancement underscores the importance of identifying and handling atypical 

cases in clinical prediction tasks. The anomaly detector helps by filtering out unusual cases that 

might confuse the main predictive models, and by potentially identifying subtle, atypical patterns 

that precede hypotension but might be missed by standard approaches. 

The Explainable Boosting Machine, while not matching the LSTM's performance, showed 

significant improvements over logistic regression. Its strong performance, coupled with its 

computational efficiency, makes it a viable option for clinical settings where responsive 

prediction is required. 

Logistic Regression, despite its simplicity, showed meaningful improvements with the anomaly 

detector, highlighting the value of this approach even with less complex models. However, its 

lower performance compared to EBM and LSTM suggests that the relationship between vital 

signs and hypotension onset is likely non-linear and complex, requiring more sophisticated 

modeling approaches. The high sensitivity and specificity achieved by the LSTM model with 

anomaly detection (88% and 85%, respectively) represented a significant advancement in 

hypotension prediction. This level of performance could translate to earlier interventions and 

potentially improved patient outcomes in clinical settings.  

However, it is important to note that while the anomaly detector improved performance across 

all models, it also adds complexity to the system. The trade-off between improved accuracy and 

increased system complexity should be carefully considered in real-world implementations. 

These results demonstrate the potential of advanced machine learning techniques, particularly 
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LSTM with anomaly detection, in improving the prediction of hypotension onset in ICU patients. 

The consistent superior performance of the 3-hour look-back window provides valuable insights 

for future model designs and clinical protocols. 

However, the success of these models in research settings relies heavily on the quality and 

frequency of the EMR’s vital signs measurements. Translating this performance to real-world 

clinical environments presents significant challenges. The current and most pressing challenge 

is that EMR systems often rely on manual data entry by healthcare providers, introducing 

potential errors and irregular timing between measurements. Even in institutions with automated 

vital signs recording, data is typically batch-uploaded into EMR systems every few hours rather 

than streaming in real-time. As a result, any deployed hypotension model may have difficulty in 

compensating for the differences in time; in addition, without an anomaly detection system, 

incorrect values may be interpreted by the model which would yield potentially spurious outputs. 

Other limitations in EMRs include data availability, as data from other traditionally non-

interoperable medical devices is not available. Thus, adverse events that have precursors 

primarily in the form of non-vital signs data cannot be addressed. Successfully deploying any 

model in clinical practice would require modernizing current infrastructure to support automated, 

high-frequency vital signs monitoring with real-time data streaming capabilities. 

One such system is Darroch Medical Solutions’, Beat Analytics System (BAS). The BAS is a 

monitoring platform that alerts healthcare providers on a mobile application when data from 

various bedside devices indicate an increased likelihood of a patient experiencing an adverse 

event in the near future. Healthcare providers can then provide early intervention in an attempt 

to prevent adverse event precursors from developing into more serious complications. This 

system addresses several of the aforementioned data consistency and availability issues. The 

BAS functions by autonomously aggregating high-frequency data directly from IV pumps, 
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hospital beds, and vital signs monitors and providing a vertically integrated data platform that 

feeds real time data into various early warning algorithms. In events where either providers or 

the BAS determines a patient may require medical attention, intelligent alerts are then provided 

to the healthcare practitioner via a mobile application, Lumori. 

This hypotension prediction model could be implemented through a phone-based mobile 

application user interface such as Lumori (see Figure 4). This interface provides real-time 

visualization of a patient’s hypotension risk over a 24-hour period, with predictions made every 

15 minutes. The graph shows the progression of risk throughout the day, allowing healthcare 

providers to identify patients who are at an increased risk for developing hypotension. The 

current A.I. prediction, displayed on the user interface, provides the user with an understanding 

of the patient's status, showing both a range (52-56%) and timeframe (1 hour) for potential 

hypotension onset. This is complemented by an at-a-glance overview of key vital signs, 

enabling quick assessment of the patient's current physiological state (see Figure 4). 

Furthermore, the mobile application allows for customization of the prediction model parameters 

(see Figure 5). Healthcare providers can adjust the parameters including data collection 

frequency, decision threshold, prediction window, and look-back window; this is the benefit of 

having a vertically integrated data aggregation, analysis, and presentation platform. As 

parameters are adjusted, the system updates sensitivity and specificity values, allowing 

providers to see how each configuration affects prediction performance. For instance, a high-

acuity unit might benefit from more frequent predictions while a step-down unit might prefer a 

longer prediction window. The decision threshold can be adjusted based on whether the unit 

prioritizes catching more potential cases (higher sensitivity) or reducing false alarms (higher 

specificity). While the 3-hour look-back window was found to be optimal in this study, the ability 

to adjust this setting allows units to better align the predictions with their patients' physiological 

patterns and monitoring protocols. The real-time display of sensitivity (82%) and specificity 
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(75%) for each configuration enables healthcare providers to optimize settings for their specific 

clinical environment. By providing interpretable predictions and the ability to customize model 

parameters, this application has the potential to enhance clinical decision-making and facilitate 

early interventions for hypotension in ICU settings. 

Limitations 

Despite the promising findings of this study, several limitations should be acknowledged to 

provide a comprehensive understanding of the results and their implications. First, the study 

utilized a single dataset from a specific population, which may limit the generalizability of the 

findings to other populations and clinical settings. The performance of the trained models in this 

study may vary across different populations with diverse demographic characteristics, 

underlying health conditions, and risk factors. Future research should aim to validate the models 

used in this study on multiple datasets from various populations and clinical environments to 

ensure their applicability and reliability across diverse settings. 

Additionally, the study did not consider the impact of treatments, such as vasopressor 

administration or fluid resuscitation, on the development of hypotension. The absence of these 

variables may affect prediction accuracy, particularly in cases where interventions alter the 

course of physiological decline. Furthermore, the dataset did not include information on 

comorbidities or other patient-specific factors that could influence hypotension risk. Future 

studies should aim to incorporate these treatment-related and patient-specific variables to 

provide a more comprehensive picture of hypotension risk and potentially improve model 

performance. 

Lastly, the study's retrospective nature limits any ability to assess the real-time performance and 

clinical impact of the models in a prospective setting. Prospective validation studies are 
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necessary to evaluate the model's performance in real-world clinical scenarios and to assess its 

impact on patient outcomes and clinical decision-making. 

In light of these limitations, it is essential to interpret the findings of this study with caution. While 

the results demonstrate the potential of the trained AI models for hypotension prediction, further 

research is required to address the limitations in deployment and validate the models' 

performance in diverse, real-world clinical settings. This includes prospective studies, multi-

center validations, and investigations into the impact of these predictive models on clinical 

decision-making and patient outcomes. 

Conclusion 

This study presents a novel feature engineering and artificial intelligence approach for predicting 

hypotension in ICU patients using near real-time vital signs data. The EBM and LSTM model 

with attention mechanism demonstrated strong predictive performance compared to traditional 

logistic regression model, offering the potential for earlier intervention and improved patient 

outcomes. The integration of the anomaly detection system enhanced the robustness of the 

prediction system, allowing for the identification of atypical cases that may require special 

clinical consideration. 

The comparative analysis of different model architectures and look-back windows provided 

valuable insights into the temporal dynamics of hypotension development and the most effective 

approaches for prediction. This knowledge can inform future research and development of 

clinical decision support systems. The ability to predict hypotension up to one hour before its 

onset could significantly impact patient management strategies, reducing the incidence of 

hypotension-related complications and improving overall patient outcomes.  
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In conclusion, this study represents a significant step forward in the application of AI for critical 

care management, specifically in the prediction of hypotension. It lays the groundwork for future 

developments in personalized patient monitoring and proactive critical care interventions, 

potentially transforming the landscape of intensive care medicine. 

  



22 
 

 

Figure 1. Alignment of Hypotensive and Non-hypotensive Patient Stays 
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Figure 2. Rolling Window Statistics Across Vital Signs

 

 

Figure 3. Project Flow Diagram 
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Figure 4. Hypotension User Interface 
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Figure 5. Hypotension Model Configurations 
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Table 1. Performance Results on Test Set without Anomaly Detector 

Model Look-back 
Window 

Sensitivity (%) Specificity (%) F1-Score 

Logistic Regression 

1 hour 71 (69-73) 69 (67-71) 0.75 

2 hours 73 (71-75) 71 (69-73) 0.77 

3 hours 76 (74-78) 73 (71-75) 0.80 

6 hours 74 (72-76) 70.5 (68.5-
72.5) 

0.78 

EBM 

1 hour 78 (76-80) 75 (73-77) 0.82 

2 hours 79 (77-81) 76 (74-78) 0.83 

3 hours 80.7 (78.7-82.7) 78 (76-80) 0.85 

6 hours 79 (77-81) 76 (74-78) 0.83 

LSTM with Attention 

1 hour 82 (80-84) 79 (77-81) 0.86 

2 hours 83 (81-85) 80 (78-82) 0.87 

3 hours 85 (83-87) 82 (80-84) 0.89 

6 hours 83 (81-85) 80 (78-82) 0.87 

 

Table 2. Performance Results on Test Set with Anomaly Detector 

Model Look-back 
Window 

Sensitivity (%) Specificity (%) F1-Score 

Logistic Regression 

1 hour 74 (72-76) 72 (70-74) 0.73 

2 hours 76 (74-78) 74 (72-76) 0.75 

3 hours 79 (77-81) 76 (74-78) 0.78 

6 hours 77 (75-79) 73.5 (71.5-75.5) 
0.76 

1 hour 81 (79-83) 78 (76-80) 0.80 
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EBM 

2 hours 82 (80-84) 79 (77-81) 0.81 

3 hours 83.7 (81.7-85.7) 81 (79-83) 0.83 

6 hours 82 (80-84) 79 (77-81) 0.81 

LSTM with Attention 

1 hour 85 (83-87) 82 (80-84) 0.84 

2 hours 86 (84-88) 83 (81-85) 0.85 

3 hours 88 (86-90) 85 (83-87) 0.87 

6 hours 86 (84-88) 83 (81-85) 0.85 

 


	Abstract
	Introduction
	Objectives
	Methodology
	Dataset
	Analysis Plan
	Model Training
	Explainable Boosting Machine
	LSTM with Attention Mechanism
	Logistic Regression
	Anomaly Detection

	Results
	Discussion
	Limitations
	Conclusion

