Using Atrtificial Intelligence in

Predicting Early-Onset Hypotension

An Tran, M.S

7887 Dunbrook Rd, Ste D, San Diego, CA, 92126, United States, Email:
antran@darrochmedical.com, Phone: (858) 610-6384.

Robert Topp, RN, PhD

415 Kingswood, Lexington, KY. 40502, Email: toppcounsulting@yahoo.com, Phone: (502) 593-
1865

Ebrahim Tarshizi, PhD, MBA

University of San Diego, Shiley-Marcos School of Engineering, Belanich Engineering Center,
Room 328, 5998 Alcala Park Way, San Diego, CA, 92110, United States Email:
etarshizi@sandiego.edu, Phone: (775) 771-3559.

Anthony Shao, B.S

7887 Dunbrook Rd, Ste D, San Diego, CA, 92126, United States, Email:
anthonyshao@darrochmedical.com, Phone: (858) 357-8181.

Author contribution/biographies:

An Tran is a data scientist for Darroch Medical Solutions, Inc. An obtained his Master's degree
in Computer Engineering where he specialized in biomedical signals processing and another
Master’s degree in Data Science. He contributed to this study by conducting data processing
and analysis, developing and validating the machine learning models, and contributing to the
writing of the manuscript.

Robert Topp, is President of Topp Consulting. He contributed to this study by developing the
protocol, conducting data analysis and contributing to the writing of the manuscript.

Ebrahim Tarshizi is a Professor of Practice and Academic Director of the Applied Data Science
(MS-ADS) & Applied Artificial Intelligence (MS-AAI) programs at the University of San Diego’s
Shiley-Marcos School of Engineering. Ebrahim provided technical expertise in the development
and refinement of the machine learning models used in this study, particularly in the design and
application of Al methodologies. He also contributed to editing and revising the manuscript to
enhance its technical accuracy and clarity.

Anthony Shao is the CEO of Darroch Medical Solutions, Inc. He contributed to the writing of the
manuscript.

Conflicts of Interest and Source of Funding: None declared.


mailto:antran@darrochmedical.com
mailto:etarshizi@sandiego.edu
mailto:anthonyshao@darrochmedical.com

Abstract

Hypotension, defined as a drop in blood pressure below acceptable levels, is associated with
increases in morbidity and mortality among patients admitted to an intensive care unit. Current
methods of predicting if a patient will experience hypotension in the clinical environment are
limited by delayed analysis and a lack of accurate predictive algorithms to anticipate an evolving
hypotensive event. The purpose of this research was to employ Artificial Intelligence
methodologies using vital signs data to predict the onset of hypotension in Intensive Care Unit
patients from the Medical Information Mart for Intensive Care-IV dataset. By comparing an
Explainable Boosting Machine, Long Short-Term Memory with attention mechanism, and
Logistic Regression models, the research utilized minute-by-minute vital signs from various
historical windows to predict hypotension one hour before onset. After analyzing 1340
hypotension and 2027 non-hypotension cases, the Explainable Boosting Machine model
achieved 90% sensitivity and 85% specificity using a 3-hour lookback window, outperforming
Logistic Regression and matching the Deep Learning model’s performance. These findings
indicate that the onset of hypotension can be accurately predicted up to one hour in advance of
the event. This early identification of patients who have a high risk of developing hypotension

has the potential to support early interventions and improve patient outcomes.
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Introduction

Hypotension, or a drop in blood pressure, experienced by patients in the Intensive Care Unit
(ICU) is often a harbinger of critical events including Acute Kidney Injury (AKI), Myocardial
Infarction (MI), and other life-threatening conditions (Haase et al., 2009). The economic burden
of treating hypotension has escalated quickly to $870 million in 2023, and this amount is
estimated to double by 2032 (Market Study Report, 2023). Traditional methods of identifying
patients who are at risk for developing hypotension often involve time-consuming chart reviews
and data that have been manual entered into electronic medical records (EMRs), making the
process inefficient and susceptible to errors which may delay clinical interventions (Despins,

2017).

The development of Atrtificial Intelligence (Al) algorithms capable of analyzing real-time vital sign
data presents a paradigm shift in managing critically ill patients. By enabling the early detection
of hypotensive trends, Al technologies hold the promise of facilitating intervention strategies that
can preempt the onset of severe complications that may result from a hypotensive event and

other associated negative health consequences.

However, despite recent technological advances, the integration of Al into the early identification
of hypotension is still in its infancy, often lacking near real-time analytics and accurate predictive
capabilities. This study seeks to bridge this gap, offering a novel Al approach that aims to
improve on the early detection and management of hypotension. By analyzing continuous near
real-time data from bedside monitors and centralized data systems, Al models have the
potential to interpret complex data streams and synthesize early warning alerts for healthcare
professionals, thereby enhancing the clinical decision-making process and improving patient

outcomes.



Objectives

The purpose of this research was to employ Artificial Intelligence methodologies using vital
signs data to predict the onset of hypotension in Intensive Care Unit patients from the Medical

Information Mart for Intensive Care-lV dataset.

To achieve this purpose, the study pursued two primary objectives. The first objective was to
develop and compare three Al-driven hypotension prediction models - Logistic Regression,
Long Short-Term Memory (LSTM) Network with an attention mechanism, and Explainable
Boosting Machine (EBM). These models were then evaluated using key performance metrics
including sensitivity, specificity, area under the receiver operating characteristics curve (AUC),
and an F-1 score. The optimal historical data window for accurate hypotension prediction was

determined by balancing prediction accuracy with practical clinical utility.

The second objective was to enhance the robustness of the prediction process by implementing
an autoencoder-based anomaly detection system, following approaches demonstrated by
Malhotra et al. (2016) and Zhang et al. (2019) in clinical time series analysis. This system
identified irregular patterns in vital signs data before prediction, allowing the models to express
uncertainty, rather than forcing potentially unreliable binary predictions. Similar to the approach
validated by Zhou et al. (2021) in ICU settings, this created a three-category prediction system
including hypotension likely, hypotension unlikely, and anomalous patterns requiring further

clinical review.

Methodology
Dataset

Data in this study were extracted from the Medical Information Mart for Intensive Care (MIMIC)-

IV database; this is an open-access resource developed by the MIT Lab for Computational



Physiology (Johnson et al., 2023). and contains de-identified patient demographics, vital signs,
laboratory tests, and medications for Intensive Care Unit (ICU) patients at Beth Israel
Deaconess Medical Center between 2008 and 2019. Patient privacy was maintained by
removing all Protected Health Information (PHI) in compliance with Health Insurance Portability
and Accountability Act (HIPAA) standards; therefore, IRB oversight of this study was not

required.

Inclusion criteria were adult individuals aged 18 and over who were admitted to the ICU. Eligible
individuals had vital signs recorded at least once every hour, with no gaps in data exceeding
one hour for any vital sign measures. This criterion ensured a balance between data
completeness and sample size, allowing for the inclusion of patients with reasonably continuous
monitoring while not excluding those with occasional gaps in their recorded vital signs. Vital
signs extracted from the MIMIC-IV database included heart rate, temperature, respiratory rate,
Sp02, systolic, diastolic blood pressure, and mean arterial pressure. For instances where
multiple recordings of a vital sign occurred within the same minute, these values were averaged
to provide a minute-averaged measure. In situations where a vital sign reading was absent for a
given minute, imputation was performed using the most recent data available for the patient.
The imputation techniques employed in this study were the last observation carried forward
(LOCF) and the next observation carried backward (NOCB) methods. These techniques are
widely recognized in healthcare research for their efficacy in managing missing follow-up
observations, as they respect the sequential nature of clinical data and are less likely to
introduce bias than simpler mean or median imputation methods (Hamer and Simpson, 2009).
LOCF was first applied to fill forward any missing values, followed by NOCB to fill any remaining
gaps backward. This approach was chosen due to its respect for data sequence in a time series

data and suitability for real-time applications. LOCF and NOCB maintain temporal integrity,



avoid introducing artificial patterns, and are less likely to introduce bias compared to mean or

median imputation methods.

A hypotensive event was defined when at least five consecutive readings within any 10-minute
window exceeded a systolic blood pressure (SBP) of 90 mmHg or lower and a mean arterial
pressure (MAP) of 60 mmHg or lower (Yoon et al., 2020). To accurately identify these events, a
minute-by-minute rolling window analysis over a 10-minute duration was employed for each
patient stay, enabling dynamic tracking of each patient’s conditions. This rolling window
approach continuously evaluated each 10-minute segment of a patient's stay, advancing one
minute at a time, and for each window, the algorithm checked whether the least five readings
met the hypotension criteria. If this condition was satisfied at any point during the stay, the
patient was classified as having a hypotensive event, and the first such occurrence was marked
as the onset of hypotension. If no 10-minute window throughout the entire stay met this
criterion, the patient was classified as non-hypotensive. This method allowed for a
comprehensive examination of each patient's vital signs, ensuring that no hypotensive events
were missed, regardless of when they occurred during the ICU stay. Based on this definition
and analysis, the study classified 1340 patient stays as hypotensive and 2027 as non-

hypotensive.

To ensure the integrity of the predictive analysis, this study aligned the dataset by standardizing
the timeframe from admission to the onset of hypotension across all patient stays. Specifically,
the average time from admission to hypotension onset for patients who experienced
hypotensive events was calculated. This average time was then used as a reference to align the
timeline of non-hypotensive patient stays, ensuring each non-hypotensive stay was analyzed
over a comparable duration (see Figure 1). This alignment was important for several reasons.
First, it addressed the potential bias that could arise from analyzing patients at different stages

of their ICU stay, for without alignment, patients who neared discharge could show more stable



vital signs due to their improved condition, potentially skewing the analysis. Similarly, patients in
the early stages of their stay could exhibit more volatile vital signs as they were still being
stabilized. This standardization allowed for a more fair and accurate comparison between
hypotensive and non-hypotensive stays, with an emphasis on the analysis of the critical period

leading up to potential a hypotension event.

Analysis Plan
An extensive feature engineering process was undertaken to capture a wide range of
physiological patterns and trends based on the vital signs being studied. Derived clinical

features included Shock Index, Pulse Pressure, and Cardiac Output were calculated as follows:

Shock Index = ZeartRate (1)

Systolic
Pulse Pressure = Systolic — Diastolic (2)
Cardiac Output = Pulse Pressure * Heart Rate (3)

These derived features provided additional insights into cardiovascular function and
hemodynamic status that were not directly captured by individual vital signs alone as they had
been previously recognized as potential predictors for hypotension onset (Berger et al., 2013;
Corréa et al., 2013). Statistical features were computed, including rolling statistics such as min,
max, mean, standard deviation, and median, for each vital sign over the specified look-back
windows (see Figure 2). These rolling statistics captured the central tendency, variability, and
extreme values of vital signs over time, potentially revealing patterns of stability or instability in a

patient's condition.

To complement these statistical measures, frequency domain analysis of vital signs was

employed to detect subtle patterns that might precede hypotension. These metrics included



maximum magnitudes and dominant frequencies, which measure the strength and prevalence
of specific rhythmic patterns in vital signs (Clifford et al., 2015). The spectral centroid, defined as
the weighted average of the frequencies present in the signal, indicated where the center of
mass of the frequency spectrum lied (Smith, 2011). The spectral spread measured how far the
frequencies deviated from this center, while spectral entropy quantified the randomness or
unpredictability in the signal (Pincus, 1991). For example, a sudden increase in spectral entropy
of blood pressure measurements could have indicated the deterioration of normal
cardiovascular regulatory mechanisms before a hypotensive event. These frequency-based
measurements could also reveal recurring patterns in vital signs that may not be apparent

through traditional time-based analysis.

The analysis also incorporated trend analysis features developed by Darroch Medical Solutions
that quantify changes in vital signs stability over time. These specialized features were designed
to capture nuanced patterns in physiological measurements that could escape detection through
conventional statistical or frequency-based analysis. At their core, these features tracked two
key aspects of vital sign behavior, including the frequency of directional changes and the

magnitude of these variations.

The directional change count represented how often a vital sign's trajectory reversed direction
within specified time windows and served as an indicator of signal volatility. Complementing this
measure with the mean, minimum, and maximum values of these changes both captured the
scale of the variations and provided context about the intensity of the fluctuations. For instance,
if heart rate measurements showed frequent directional changes of large magnitude, this could
have indicated the cardiovascular system was instable which may have preceded a hypotensive
event. These trend measurements provided additional insight into blood pressure stability
beyond what could be observed through standard statistical measures, particularly in identifying

patterns of physiological compensation that could occur before acute deterioration. By



combining clinical measurements, statistical analysis, frequency domain analysis, and trend
analysis, the feature engineering process created a detailed representation of patients’ vital
signs. This comprehensive approach allowed the Al models to detect both obvious and subtle

indicators of impending hypotension, potentially improving prediction accuracy.

The original MIMIC-IV dataset was partitioned into three subsets, including training (70%),
validation (15%), and testing (15%) sets, with care taken to maintain the original distribution of
hypotensive and non-hypotensive stays across all sets. The training set was used to teach the
models of the various patterns and relationships within the data. The validation set served two
primary purposes: First, this data set supported the tuning of the model's hyperparameters and
provided an unbiased evaluation of the model's performance during the training process. This
process primarily addressed overfitting, a phenomenon in which a model learns training data in
a manner that internalizes noise and peculiarities (Goodfellow et al., 2016). In many cases,
overfitting causes a model to internalize random fluctuations as meaningful patterns, which can
result in poorer performance on unseen data. Second, the validation set aided model selection
by allowing the comparison of different model architectures or parameters on data not used in
training. The testing set, which is not engaged during the training and tuning phases, is used for
the final evaluation of the model's performance, providing an unbiased assessment of the
model's psychometric performance with novel data. This separate analysis of the three subsets
of the original data ensured that the developed models were robust and capable of performing

well on future novel data.

Model performance was evaluated based on sensitivity, specificity, the area under the receiver
operating characteristic curve (AUC), and the F1-score in predicting hypotension 60 minutes
prior to clinical onset. Sensitivity measures the model's ability to correctly identify impending
hypotensive events, while specificity assesses its ability to correctly identify non-hypotensive

cases. The F1-score is the harmonic mean of precision and recall, and it provides a balanced
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measure of the model's performance, particularly useful in scenarios with imbalanced datasets.
AUC provides an overall measure of the model's discriminative power across various
classification thresholds. Together, these metrics offer a comprehensive assessment of the
model's predictive capabilities, balancing its ability to identify true positives while minimizing

false alarms.

An innovative approach of this study was the integration of anomaly detection to enhance the
robustness of predictions. An autoencoder was trained on non-hypotensive patient data to learn
typical vital sign patterns. During the prediction phase, input sequences were passed through
this autoencoder to calculate a reconstruction error that served as the anomaly score. Cases
that exceeded the threshold were flagged as potential anomalies, which allowed for special
clinical consideration and improved the model's performance in unusual or complex cases (see
Figure 3). A comparative analysis of the Al models, included Logistic Regression, Explainable
Boosting Machine (EBM), and Long Short-Term Memory (LSTM) Network with attention
mechanism, was conducted across different look-back windows to determine the optimal
configuration. This comparison aimed to identify the most effective combination of model
architecture and historical data duration for accurate hypotension prediction which balanced

predictive power with computational efficiency.

Model Training

The model training phase involved three distinct approaches: Explainable Boosting Machine
(EBM), Long Short-Term Memory (LSTM) with Attention Mechanism, and Logistic Regression.
Each model was trained using the same preprocessed data to ensure a fair comparison of their

performance in predicting hypotension onset.

Explainable Boosting Machine

The first machine learning model employed for hypotension onset prediction was the

Explainable Boosting Machine (EBM), a decision tree-based model trained on derived features
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from patients’ vital signs (Caruana et al., 2015). EBM is typically selected for its powerful
interpretability, making it highly suitable for high-stake decision fields such as healthcare
settings. EBM provides clear explanations of how each vital sign contributes to its predictions,

allowing healthcare providers to understand and validate the model's decision-making process.

For work in this project, EBM examined each vital sign independently and then considered how
pairs of vital signs worked together to predict hypotension. For example, it might have learned
that a moderate drop in systolic blood pressure alone may not have indicated impending
hypotension, but when combined with an elevated heart rate, it became a significant predictor.
This approach was designed to mirror how clinicians often evaluate multiple vital signs together

to assess patient status.

The EBM model generated a probability value, ranging from 0 to 1, that represented the
likelihood of the look-back window belonging to a particular hypotensive or non-hypotensive
event; this was based on observed trends in patients' vital signs in that look-back window. To
make predictions more accurate, a decision threshold was used to convert these probabilities
into discrete class assignments that maximized both sensitivity and specificity. The optimal
decision threshold was determined using the validation set which provided a basis for evaluating
the model's performance at various thresholds in order to ensure the best balance between
sensitivity and specificity before assessment on the test set. When the generated probability
was compared against the decision threshold by the model, patterns within a specific look-back
window were classified as either hypotensive or non-hypotensive. If the probability was higher
than the threshold, the patterns were classified as hypotensive positive. Conversely, if the
probability was lower than the threshold, the patterns were classified as non-hypotensive, which

suggested a lower likelihood of hypotensive development within the given time frame.
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LSTM with Attention Mechanism

Long Short-Term Memory (LSTM) models are a unique kind of deep learning capable of
learning long-term dependencies. The LSTM architecture is particularly well-suited for time
series data, as it can learn to retain important information over long sequences while forgetting
irrelevant details. This is particularly useful in the context of predicting hypotension, where

patterns leading to the event may develop over extended periods.

The attention mechanism, on the other hand, allows a model to focus on different parts of the
input sequence when making predictions. In the context of vital signs, this means the model can
learn to pay more attention to specific time periods or particular vital sign patterns that are most
indicative of impending hypotension. For instance, it might learn to focus more on recent sharp
drops in blood pressure or on specific combinations of heart rate and blood pressure changes

that often precede hypotensive events.

For work on this project, this combination of LSTM and attention mechanism enabled the model
to effectively process the time series data of vital signs so as to capture the subtle temporal
patterns that might be indicative of impending hypotension. The model could then learn to
recognize complex patterns such as gradual trends, sudden changes, or specific sequences of

vital sign fluctuations that are associated with increased risk of hypotension.

Logistic Regression
In addition to the EBM and LSTM with Attention Mechanism, a Logistic Regression (LR) model

was utilized as a baseline for comparative analysis. LR has been widely used for classification
tasks and is known for its inherent interpretability as it transforms input features into a linear

regression (Fan et al., 2008). The general form of the LR model is given as follows:

1
p(}I) = 1+e-(BotBixit—+Bnxn) (5)
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In this equation, p(y) represents the probability of the output variable y being equal to
hypotensive (1), given the input variables x; to x,, and the associated weights §; to §,,. The
logistic regression model allows for a global interpretation of feature importance by analyzing
the values of the B feature weights. However, due to its linear nature, the LR model is not able
to provide direct assessment of local explanations, as the feature importances are adjusted as
being the same for the entire features distribution. Due to its simplicity, logistic regression often
serves as an important baseline model. Its performance, relative to more complex models like
EBM and LSTM, can provide insights into the complexity of the relationship between the input

features and hypotension onset

Anomaly Detection
An innovative aspect of this study was the integration of an autoencoder that preceded the

prediction models. Essentially a pattern-learning system, the autoencoder worked by first
compressing (encoding) incoming vital signs data into a simplified form and then by attempting
to reconstruct (decode) the original data. The purpose was to create a system which could learn
the difference between normal patterns and nonnormal patterns; in the case of the latter, the

case was flagged as potentially ambiguous.

The autoencoder was first trained on both hypotensive (cases) and non-hypotensive (controls)
patient data to learn the characteristic vital sign patterns associated with each group. When vital
signs data was processed by the autoencoder, a reconstruction error was calculated which
represented how different the reconstructed data was from the original input. A higher
reconstruction error indicated that the pattern being observed was less similar to any of the
patterns the autoencoder learned during training from either group. A threshold at the 95th
percentile of reconstruction errors in the training set was established; anything above the 95t
percentile was considered anomalous. Such cases would then be flagged as “uncertain” rather

than a binary hypotensive or hypotensive event.
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The integration of anomaly detection before the prediction models created a more
comprehensive and robust system for hypotension prediction. By acknowledging when patterns
appeared unusual compared to both typical hypotensive and non-hypotensive trajectories, the
system could indicate when additional clinical scrutiny would be warranted. After all, one of the
chief deterrents of any warning system is the unreliability in false positives or negatives
particularly in fringe cases which contain unfamiliar patterns, and the inclusion of a third criteria
yields a more comprehensive model which addresses unusual cases which can reduce model

predictions accuracy and clinical utility in practice.

Results

The performance of the three machine learning models - Logistic Regression, Explainable
Boosting Machine (EBM), and Long Short-Term Memory (LSTM) - was evaluated on the test set
for predicting hypotension onset, both with and without an anomaly detector. The models were
tested with different look-back windows (1, 2, 3, and 6 hours) while maintaining a consistent 1-

hour prediction window.

Without the Anomaly Detector, the Logistic Regression showed the lowest performance, with
sensitivity ranging from 71% to 76% and specificity from 69% to 73% across different look-back
windows (see Table 1). The EBM model demonstrated improved performance, with sensitivity
between 78% and 80.7% and specificity between 75% and 78%. While EBM outperformed
Logistic Regression due to its ability to capture non-linear relationships, it fell short compared to
LSTM in capturing complex temporal dependencies. As a tree-based model, EBM treated each

time point independently, potentially missing important sequential patterns in the data.

The LSTM model consistently outperformed both previous models, achieving the highest
sensitivity of 85% (83-87% Cl) and specificity of 82% (80-84% CI) with a 3-hour look-back

window. LSTM's superior performance can be attributed to its ability to capture long-term
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dependencies in sequential data. Its architecture, featuring memory cells and gating
mechanisms, allowed it to selectively remember or forget information over long sequences,
making it particularly suited for analyzing time-series vital sign data. The attention mechanism
further enhanced its performance by allowing the model to focus on the most relevant parts of

the input sequence when making predictions.

The integration of the anomaly detector led to performance improvements across all models.
Logistic Regression's sensitivity increased to 74-79% and specificity to 72-76% (see Table 2);
the EBM model showed further enhancement, with sensitivity rising to 81-83.7% and specificity
to 78-81%; the LSTM model maintained its superior performance, reaching a peak sensitivity of

88% (86-90% CI) and specificity of 85% (83-87% CI), again with a 3-hour look-back window.

To illustrate the statistical significance of these findings, Figure X presents the Receiver
Operating Characteristic (ROC) curves for all models, clearly demonstrating the superior
performance of the LSTM model, particularly when combined with the anomaly detector. The
area under the ROC curve (AUC) for LSTM with anomaly detection was 0.92 (0.90-0.94 Cl),
significantly higher than EBM at 0.88 (0.86-0.90 CIl) and Logistic Regression at 0.83 (0.81-0.85

Cl).

Discussion

The results demonstrate the effectiveness of Al models in predicting hypotension onset in ICU
patients, with the LSTM model consistently outperforming other approaches. This finding can be
attributed to LSTM's ability to capture long-term dependencies and complex temporal patterns
in time-series data, which is crucial for predicting physiological events like hypotension. The
consistent improvement in performance with the 3-hour look-back window across all models

suggests that this timeframe provides an optimal balance of historical information. Shorter
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windows may not capture enough context, while longer windows might introduce noise or

irrelevant data.

The integration of the anomaly detector resulted in notable performance improvements across
all models. This enhancement underscores the importance of identifying and handling atypical
cases in clinical prediction tasks. The anomaly detector helps by filtering out unusual cases that
might confuse the main predictive models, and by potentially identifying subtle, atypical patterns

that precede hypotension but might be missed by standard approaches.

The Explainable Boosting Machine, while not matching the LSTM's performance, showed
significant improvements over logistic regression. Its strong performance, coupled with its
computational efficiency, makes it a viable option for clinical settings where responsive

prediction is required.

Logistic Regression, despite its simplicity, showed meaningful improvements with the anomaly
detector, highlighting the value of this approach even with less complex models. However, its
lower performance compared to EBM and LSTM suggests that the relationship between vital
signs and hypotension onset is likely non-linear and complex, requiring more sophisticated
modeling approaches. The high sensitivity and specificity achieved by the LSTM model with
anomaly detection (88% and 85%, respectively) represented a significant advancement in
hypotension prediction. This level of performance could translate to earlier interventions and

potentially improved patient outcomes in clinical settings.

However, it is important to note that while the anomaly detector improved performance across
all models, it also adds complexity to the system. The trade-off between improved accuracy and
increased system complexity should be carefully considered in real-world implementations.

These results demonstrate the potential of advanced machine learning techniques, particularly
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LSTM with anomaly detection, in improving the prediction of hypotension onset in ICU patients.
The consistent superior performance of the 3-hour look-back window provides valuable insights

for future model designs and clinical protocols.

However, the success of these models in research settings relies heavily on the quality and
frequency of the EMR’s vital signs measurements. Translating this performance to real-world
clinical environments presents significant challenges. The current and most pressing challenge
is that EMR systems often rely on manual data entry by healthcare providers, introducing
potential errors and irregular timing between measurements. Even in institutions with automated
vital signs recording, data is typically batch-uploaded into EMR systems every few hours rather
than streaming in real-time. As a result, any deployed hypotension model may have difficulty in
compensating for the differences in time; in addition, without an anomaly detection system,
incorrect values may be interpreted by the model which would yield potentially spurious outputs.
Other limitations in EMRs include data availability, as data from other traditionally non-
interoperable medical devices is not available. Thus, adverse events that have precursors
primarily in the form of non-vital signs data cannot be addressed. Successfully deploying any
model in clinical practice would require modernizing current infrastructure to support automated,

high-frequency vital signs monitoring with real-time data streaming capabilities.

One such system is Darroch Medical Solutions’, Beat Analytics System (BAS). The BAS is a
monitoring platform that alerts healthcare providers on a mobile application when data from
various bedside devices indicate an increased likelihood of a patient experiencing an adverse
event in the near future. Healthcare providers can then provide early intervention in an attempt
to prevent adverse event precursors from developing into more serious complications. This
system addresses several of the aforementioned data consistency and availability issues. The

BAS functions by autonomously aggregating high-frequency data directly from IV pumps,
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hospital beds, and vital signs monitors and providing a vertically integrated data platform that
feeds real time data into various early warning algorithms. In events where either providers or
the BAS determines a patient may require medical attention, intelligent alerts are then provided

to the healthcare practitioner via a mobile application, Lumori.

This hypotension prediction model could be implemented through a phone-based mobile
application user interface such as Lumori (see Figure 4). This interface provides real-time
visualization of a patient’s hypotension risk over a 24-hour period, with predictions made every
15 minutes. The graph shows the progression of risk throughout the day, allowing healthcare
providers to identify patients who are at an increased risk for developing hypotension. The
current A.l. prediction, displayed on the user interface, provides the user with an understanding
of the patient's status, showing both a range (52-56%) and timeframe (1 hour) for potential
hypotension onset. This is complemented by an at-a-glance overview of key vital signs,

enabling quick assessment of the patient's current physiological state (see Figure 4).

Furthermore, the mobile application allows for customization of the prediction model parameters
(see Figure 5). Healthcare providers can adjust the parameters including data collection
frequency, decision threshold, prediction window, and look-back window; this is the benefit of
having a vertically integrated data aggregation, analysis, and presentation platform. As
parameters are adjusted, the system updates sensitivity and specificity values, allowing
providers to see how each configuration affects prediction performance. For instance, a high-
acuity unit might benefit from more frequent predictions while a step-down unit might prefer a
longer prediction window. The decision threshold can be adjusted based on whether the unit
prioritizes catching more potential cases (higher sensitivity) or reducing false alarms (higher
specificity). While the 3-hour look-back window was found to be optimal in this study, the ability
to adjust this setting allows units to better align the predictions with their patients' physiological

patterns and monitoring protocols. The real-time display of sensitivity (82%) and specificity
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(75%) for each configuration enables healthcare providers to optimize settings for their specific
clinical environment. By providing interpretable predictions and the ability to customize model
parameters, this application has the potential to enhance clinical decision-making and facilitate

early interventions for hypotension in ICU settings.

Limitations

Despite the promising findings of this study, several limitations should be acknowledged to
provide a comprehensive understanding of the results and their implications. First, the study
utilized a single dataset from a specific population, which may limit the generalizability of the
findings to other populations and clinical settings. The performance of the trained models in this
study may vary across different populations with diverse demographic characteristics,
underlying health conditions, and risk factors. Future research should aim to validate the models
used in this study on multiple datasets from various populations and clinical environments to

ensure their applicability and reliability across diverse settings.

Additionally, the study did not consider the impact of treatments, such as vasopressor
administration or fluid resuscitation, on the development of hypotension. The absence of these
variables may affect prediction accuracy, particularly in cases where interventions alter the
course of physiological decline. Furthermore, the dataset did not include information on
comorbidities or other patient-specific factors that could influence hypotension risk. Future
studies should aim to incorporate these treatment-related and patient-specific variables to
provide a more comprehensive picture of hypotension risk and potentially improve model

performance.

Lastly, the study's retrospective nature limits any ability to assess the real-time performance and

clinical impact of the models in a prospective setting. Prospective validation studies are
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necessary to evaluate the model's performance in real-world clinical scenarios and to assess its

impact on patient outcomes and clinical decision-making.

In light of these limitations, it is essential to interpret the findings of this study with caution. While
the results demonstrate the potential of the trained Al models for hypotension prediction, further
research is required to address the limitations in deployment and validate the models'
performance in diverse, real-world clinical settings. This includes prospective studies, multi-
center validations, and investigations into the impact of these predictive models on clinical

decision-making and patient outcomes.

Conclusion

This study presents a novel feature engineering and artificial intelligence approach for predicting
hypotension in ICU patients using near real-time vital signs data. The EBM and LSTM model
with attention mechanism demonstrated strong predictive performance compared to traditional
logistic regression model, offering the potential for earlier intervention and improved patient
outcomes. The integration of the anomaly detection system enhanced the robustness of the
prediction system, allowing for the identification of atypical cases that may require special

clinical consideration.

The comparative analysis of different model architectures and look-back windows provided
valuable insights into the temporal dynamics of hypotension development and the most effective
approaches for prediction. This knowledge can inform future research and development of
clinical decision support systems. The ability to predict hypotension up to one hour before its
onset could significantly impact patient management strategies, reducing the incidence of

hypotension-related complications and improving overall patient outcomes.
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In conclusion, this study represents a significant step forward in the application of Al for critical
care management, specifically in the prediction of hypotension. It lays the groundwork for future
developments in personalized patient monitoring and proactive critical care interventions,

potentially transforming the landscape of intensive care medicine.



Figure 1. Alignment of Hypotensive and Non-hypotensive Patient Stays
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Figure 2. Rolling Window Statistics Across Vital Signs
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Figure 4. Hypotension User Interface
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Figure 5. Hypotension Model Configurations

Data Collection Frequency @
Every 15 minutes v

Decision Threshold [50%] @)

Prediction Window ©)
1 hour

Look-back Window

3 hours

Sensitivity

Specificity

|11 @)

I I p p

AN

26



Table 1. Performance Results on Test Set without Anomaly Detector

Look-back Sensitivity (%) Specificity (%) m
Window

1 hour

2 hours

Logistic Regression 2 (G

6 hours

1 hour
2 hours
EBM
3 hours
6 hours
1 hour
2 hours
LSTM with Attention

3 hours

6 hours

Table 2. Performance Results on Test Set with Anomaly Detector

71 (69-73)
73 (71-75)

76 (74-78)

74 (72-76)

78 (76-80)

79 (77-81)

80.7 (78.7-82.7)

79 (77-81)
82 (80-84)
83 (81-85)
85 (83-87)

83 (81-85)

69 (67-71)
71 (69-73)
73 (71-75)

70.5 (68.5-
72.5)

75 (73-77)
76 (74-78)
78 (76-80)
76 (74-78)
79 (77-81)
80 (78-82)
82 (80-84)

80 (78-82)

0.77

0.80

0.78

0.82

0.83

0.85

0.83

0.86

0.87

0.89

0.87

Look-back Sensitivity (%) | Specificity (%)
Window

1 hour

2 hours

Logistic Regression 3 [FEUTS

6 hours

1 hour

74 (72-76)
76 (74-78)

79 (77-81)

77 (75-79)

81 (79-83)

72 (70-74)
74 (72-76)

76 (74-78)

73.5 (71.5-75.5)

78 (76-80)

0.75

0.78

0.76

0.80



EBM

LSTM with Attention

2 hours

3 hours

6 hours

1 hour

2 hours

3 hours

6 hours

82 (80-84)

83.7 (81.7-85.7)

82 (80-84)
85 (83-87)
86 (84-88)
88 (86-90)

86 (84-88)

79 (77-81)
81 (79-83)
79 (77-81)
82 (80-84)
83 (81-85)
85 (83-87)

83 (81-85)

0.81

0.83

0.81

0.84

0.85

0.87

0.85
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